A Focus on Nutrition
Key Findings of the 2008/09
New Zealand Adult Nutrition Survey
Foreword

I am pleased to bring to you this report, A Focus on Nutrition, Key findings of the 2008/09 New Zealand Adult Nutrition Survey.

The Government’s overarching goal for health is to enable New Zealanders to live longer, healthier and more independent lives. Lifelong good nutrition is needed to achieve this. The 2008/09 New Zealand Adult Nutrition Survey provides us with a wealth of reliable and up-to-date information about the nutritional health of adult New Zealanders.

There is good news in the survey. Compared to the 1997 National Nutrition Survey, there was a decline in the contribution of saturated fat to total energy intake, a decrease in total blood cholesterol, and an increase in eating the recommended two or more servings of fruit per day. However, the survey also identified areas we need to work on: since 1997, there has been an increase in the prevalence of obesity, and an increase in the prevalence of low food security.

Over time, the survey results will contribute to the development and evaluation of policy, the development of the Ministry of Health Food and Nutrition Guidelines and the review of Nutrient Reference Values. Survey data can also be used in monitoring diabetes, providing information when developing food standards, and monitoring changes in the food supply.

This report represents a significant undertaking by a large group of people over a long period of time. I congratulate the research teams and External Technical Group, and thank them for their time and commitment to this project. I especially want to thank the 4721 New Zealanders who gave their time to take part in the survey – it would not have been possible without them.

Signed by
Acknowledgements

First, thank you to the 4721 New Zealanders who opened their homes to the interviewers and made the 2008/09 New Zealand Adult Nutrition Survey possible.

The survey was funded by the Ministry of Health and conducted by the University of Otago. CBG Health Research Ltd recruited participants into the survey.

The survey was managed in the Ministry of Health, initially by Kirsten McLachlan and then from December 2008 by Sally Mackay. We are grateful to the many colleagues in the Health and Disability Intelligence Unit of the Ministry of Health and across the Ministry who contributed to the development, implementation and analysis of this survey.

The Nutrition Director for the survey was Associate Professor Winsome Parnell of the University of Otago. John Harvey, Project Manager, handled the day-to-day co-ordination of the survey during the data collection phase.

The survey would not have been completed without the dedication of a number of people. These include members of the External Technical Group; the regional supervisors and field staff who collected the data; the University of Otago project office staff who checked and analysed the data; and the members of the academic staff of the Department of Human Nutrition who provided expert advice.

Particular thanks go to Professor David Russell and Dr Noela Wilson for their advice and encouragement throughout the survey, and for their expert editorial assistance in the drafting of the descriptive report.

The Institute of Plant and Food Research Ltd (Palmerston North) provided food composition data and assisted with nutrient matching. The contribution made by Dr Lee Huffmann was crucial in resolving many complex issues.

Canterbury Health Laboratories were responsible for collecting and analysing the biological samples. Special thanks go to Kevin Taylor, who assumed responsibility for this work after the sudden death of Barrie Edwards.

Appendix 1 outlines in more detail the many people who assisted throughout the survey.
Authors

Authorship of individual chapters was as follows.

Chapter 1 Sally Mackay, Ministry of Health; Associate Professor Winsome Parnell, University of Otago
Chapter 2 Dr Anne-Louise Heath, Dr Rachel Brown, Associate Professor Winsome Parnell, Dr Noela Wilson, Andrew Gray, University of Otago; Maria Turley, Sally Mackay, Dr Deepa Weerasekera, Ministry of Health
Chapter 3 Associate Professor Winsome Parnell, Liz Fleming, University of Otago
Chapter 4 Associate Professor Winsome Parnell, Liz Fleming, University of Otago
Chapter 5 Associate Professor Winsome Parnell, Liz Fleming, University of Otago
Chapter 6 Sally Mackay, Ministry of Health
Chapter 7 Associate Professor Winsome Parnell, University of Otago
Chapter 8 Associate Professor Winsome Parnell, Dr Noela Wilson, Professor Christine Thomson, University of Otago; Sally Mackay, Dr Niki Stefanogiannis, Maria Turley, Ministry of Health
Chapter 9 Associate Professor Winsome Parnell, University of Otago; Maria Turley, Dr Niki Stefanogiannis, Ministry of Health
4 Nutrient Intakes and Dietary Sources: Micronutrients
4.1 Explanatory notes 111
4.2 Vitamin A 113
4.3 Vitamin C 132
4.4 Vitamin E 138
4.5 The B vitamins 144
4.6 Calcium 174
4.7 Iron 181
4.8 Zinc 187
4.9 Potassium 193
4.10 Selenium 199

5 Dietary Supplements
5.1 Use in the last year 206
5.2 Types of supplements consumed 207

6 Dietary Habits
6.1 Having breakfast every day 216
6.2 Eating from the four major food groups 218
6.3 Food preparation and cooking practices 238
6.4 Fast foods and takeaways 252
6.5 Drinks 255

7 Food Security
7.1 The eight facets of food security 260
7.2 Categories of household food security 263

8 Nutrition-related Health Outcomes
8.1 Body size 275
8.2 Blood pressure 282
8.3 Iron status 285
8.4 Cholesterol 290
8.5 Folate status 294
8.6 Diabetes and HbA1c 299
8.7 Iodine status 302

9 Have We Changed?
9.1 Energy and macronutrient intakes 307
9.2 Selected nutrient intakes 308
9.3 Vegetable and fruit intake 310
9.4 Body size 310
9.5 Total and HDL cholesterol 311
9.6 Iron status 312
9.7 Food security 312

References 314
Appendices

Appendix 1: Personnel involved 318
Appendix 2: Participant feedback 323
Appendix 3: Analytical techniques for nutrients in the New Zealand Food Composition Database (NZFCDB) 324
Appendix 4: Nutrient matching 326
Appendix 5: Cell sizes 330

List of Tables
Table 2.1: Blood and urine samples 9
Table 2.2: Food groups used in the 2008/09 New Zealand Adult Nutrition Survey 12
Table 2.3: Estimated average requirements (EARs) per day used in the probability analysis 15
Table 3.1: Energy intake, by age group, ethnic group, NZDep2006 and sex 25
Table 3.2: Energy sources, percent (95% CI), by age group, sex and food group 27
Table 3.3: Protein intake (g) and % energy from protein, by age group, ethnic group, NZDep2006 and sex 32
Table 3.4: Protein sources, percent (95% CI), by age group, sex and food group 35
Table 3.5: Total fat intake, by age group, ethnic group, NZDep2006 and sex 40
Table 3.6: Total fat sources, percent (95% CI), by age group, sex and food group 42
Table 3.7: Saturated fat intake, by age group, ethnic group, NZDep2006 and sex 47
Table 3.8: SAFA sources, percent (95% CI), by age group, sex and food group 49
Table 3.9: Monounsaturated fat intake, by age group, ethnic group, NZDep2006 and sex 53
Table 3.10: Monounsaturated fat sources, percent (95% CI), by age group, sex and food group 55
Table 3.11: Polyunsaturated fat intake, by age group, ethnic group, NZDep2006 and sex 59
Table 3.12: Polyunsaturated fat sources, percent (95% CI), by age group, sex and food group 61
Table 3.13: Cholesterol intake, by age group, ethnic group, NZDep2006 and sex 65
Table 3.14: Cholesterol sources, percent (95% CI), by age group, sex and food group 67
Table 3.15: Carbohydrate intake, by age group, ethnic group, NZDep2006 and sex 72
Table 3.16: Carbohydrate sources, percent (95% CI), by age group, sex and food group 74
Table 3.17: Total sugars intake, by age group, ethnic group, NZDep2006 and sex 78
Table 3.18: Total sugars sources, percent (95% CI), by age group, sex and food group 80
Table 3.19: Sucrose intake, by age group, ethnic group, NZDep2006 and sex 84
Table 3.20: Sucrose sources, percent (95% CI), by age group, sex and food group 86
Table 3.21: Fructose intake, by age group, ethnic group, NZDep2006 and sex 90
Table 3.22: Fructose sources, percent (95% CI), by age group, sex and food group 92
Table 3.23: Lactose intake, by age group, ethnic group, NZDep2006 and sex 96
Table 3.24: Lactose sources, percent (95% CI), by age group, sex and food group 98
Table 3.25: Total dietary fibre intake, by age group, ethnic group, NZDep2006 and sex 102
Table 3.26: Total dietary fibre sources, percent (95% CI), by age group, sex and food group 104
Table 3.27: Alcohol intake, by age group, ethnic group, NZDep2006 and sex 107
Table 3.28: Alcohol sources, percent (95% CI), by age group, sex and food group 110
Table 4.1: Vitamin A equivalents intake, by age group, ethnic group, NZDep2006 and sex 116
Table 4.2: Vitamin A equivalent sources, percent (95% CI), by age group, sex and food group 118
Table 4.3: β-carotene intake, by age group, ethnic group, NZDep2006 and sex 122
Table 4.4: β-carotene sources, percent (95% CI), by age group, sex and food group 124
Table 6.15: Use of iodised salt, by age group, NZDep2006 and sex 251
Table 6.16: Frequency of fast food, hot chips, fruit juice/fruit drinks and soft drinks/energy drinks, by age group, NZDep2006 and sex 259
Table 7.1: Household food security over the last year, by age group, ethnic group, NZDep2006 and sex 265
Table 7.2: Categories of household food security, by age group, ethnic group, NZDep2006 and sex 273
Table 8.1: Body size, by age group, ethnic group, NZDep2006 and sex 279
Table 8.2: Blood pressure, by age group, ethnic group, NZDep2006 and sex 284
Table 8.3: Iron status measures 286
Table 8.4: Ferritin and haemoglobin, by age group, ethnic group, NZDep2006 and sex 287
Table 8.5: Prevalence of iron deficiency, by age group, ethnic group, NZDep2006 and sex 289
Table 8.6: Cholesterol, by age group, ethnic group, NZDep2006 and sex 293
Table 8.7: Folate, by age group, ethnic group, NZDep2006 and sex 297
Table 8.8: HbA1c, by age group, ethnic group, NZDep2006 and sex 300
Table 8.9: Urinary iodine, by age group, ethnic group, NZDep2006 and sex 303
Table 9.1: Summary of design and methods of the adult nutrition surveys 306
Table 9.2: Energy intake and contribution from macronutrients, by sex, 1997 and 2008/09 308
Table 9.3: Median usual daily nutrient intakes, by sex, 1997 and 2008/09 309
Table 9.4: Vegetable and fruit intake, by sex, 1997 and 2008/09 310
Table 9.5: Body size, by sex, 1997 and 2008/09 311
Table 9.6: Mean total and HDL cholesterol concentration, by sex, 1997 and 2008/09 311
Table 9.7: Iron status, by sex, 1997 and 2008/09 312
Table 9.8: Categories of food security, by sex, 1997 and 2008/09 313
Table A4.1: Analytical techniques for nutrients 324
Table A5.1: Number of respondents for each component of the survey, by age group, sex, ethnic group and NZDep2006 331

List of Figures
Figure 3.1: Median energy intake (kJ), by age group and sex 23
Figure 3.2: Percent energy from bread, by age group and sex 24
Figure 3.3: Median protein intake (g), by age group and sex 29
Figure 3.4: Mean percent energy from protein, by age group and sex 30
Figure 3.5: Percent protein from poultry, by age group and sex 31
Figure 3.6: Median total fat intake (g), by age group, and sex 37
Figure 3.7: Percent energy from total fat, by age group and sex 38
Figure 3.8: Percent total fat from Potatoes, kumara and taro, by age group and sex 39
Figure 3.9: Median SAFA intake (g), by age group and sex 44
Figure 3.10: Percent energy from SAFA, by age group and sex 45
Figure 3.11: Percent SAFA from Potatoes, kumara and taro, by age group and sex 46
Figure 3.12: Median MUFA intake (g), by age group and sex 51
Figure 3.13: Percent MUFA from Butter and margarine, by age group and sex 52
Figure 3.14: Median PUFA intake (g), by age group and sex 57
Figure 3.15: Percent PUFA from Butter and margarine, by age group and sex 58
Figure 3.16: Median cholesterol intake (mg), by age group and sex 63
Figure 3.17: Percent cholesterol from Eggs and egg dishes, by age group and sex 64
Figure 3.18: Median carbohydrate intake (g), by age group and sex 69
Figure 3.19: Percent energy from carbohydrate, by age group and sex 70
Figure 3.20: Percent carbohydrate from non-alcoholic beverages, by age group and sex 71
Figure 3.21: Median intake of total sugars (g), by age group and sex 76
Figure 3.22: Percent total sugars from Non-alcoholic beverages, by age group and sex 77
Figure 3.23: Median sucrose intake (g), by age group and sex 82
Figure 3.24: Percent sucrose from non-alcoholic beverages, by age group and sex 83
Figure 3.25: Median fructose intake (g), by age group and sex 88
Figure 3.26: Percent fructose from Fruit, by age group and sex 89
Figure 3.27: Median lactose intake (g), by age group and sex 94
Figure 3.28: Percent lactose from Milk, by age group and sex 95
Figure 3.29: Median dietary fibre intake (g), by age group and sex 100
Figure 3.30: Percent dietary fibre from Vegetables, by age group and sex 101
Figure 4.1: Median vitamin A equivalents intake (μg RE), by age group and sex 114
Figure 4.2: Percent vitamin A from Vegetables, by age group and sex 115
Figure 4.3: Median β-carotene intake (μg), by age group and sex 120
Figure 4.4: Percent β-carotene from Vegetables, by age group and sex 121
Figure 4.5: Median retinol intake (μg), by age group and sex 126
Figure 4.6: Percent retinol from Butter and margarine, by age group and sex 127
Figure 4.7: Median vitamin C intake (mg), by age group and sex 132
Figure 4.8: Percent vitamin C from non-alcoholic beverages, by age group and sex 133
Figure 4.9: Median vitamin E intake (mg), by age group and sex 138
Figure 4.10: Percent vitamin E from Butter and margarine, by age group and sex 139
Figure 4.11: Median thiamin intake (mg), by age group and sex 144
Figure 4.12: Percent thiamin from Breakfast cereals, by age group and sex 145
Figure 4.13: Median riboflavin intake (mg), by age group and sex 150
Figure 4.14: Percent riboflavin from Milk, by age group and sex 151
Figure 4.15: Median niacin intake (mg), by age group and sex 156
Figure 4.16: Percent niacin from bread, by age group and sex 157
Figure 4.17: Median vitamin B₆ intake (mg), by age group and sex 162
Figure 4.18: Percent vitamin B₆ from Fruit, by age group and sex 163
Figure 4.19: Median vitamin B₁₂ intake (μg), by age group and sex 168
Figure 4.20: Percent vitamin B₁₂ from Beef and veal, by age group and sex 169
Figure 4.21: Median calcium intake (mg), by age group and sex 174
Figure 4.22: Percent calcium intake from Milk, by age group and sex 176
Figure 4.23: Median iron intake (mg), by age group and sex 181
Figure 4.24: Percent iron from breakfast cereals, by age group and sex 182
Figure 4.25: Median zinc intake (mg), by age group and sex 187
Figure 4.26: Percent zinc from Beef and veal, by age group and sex 188
Figure 4.27: Median potassium intake (mg), by age group and sex 193
Figure 4.28: Percent potassium from vegetables, by age group and sex 194
Figure 4.29: Median selenium intake (μg), by age group and sex 199
Figure 4.30: Percent selenium from Fish and seafood, by age group and sex 200
Figure 5.1: Percent Any supplement use, by age group and sex 206
Figure 5.2: Percent Regular supplement use, by age group and sex 207
Figure 5.3: Types of supplements, by sex 208
Figure 6.1: Percent eating breakfast daily, by age group and sex 217
Glossary

24-hour recall: A dietary assessment method that collects information on all foods and drinks consumed in a 24-hour period.

95% confidence interval: An indicator of the accuracy of a survey estimate. The 95% confidence interval (95% CI) is the interval that would be expected to contain the true population value 95% of the time, if many samples were taken. In this report, 95% confidence intervals have been presented in parentheses in tables, and as error bars in graphs.

Acceptable macronutrient distribution range (AMDR): An estimate of the range of intake for each macronutrient (expressed as percent contribution to energy), which would allow for an adequate intake of all the other nutrients while maximising good health (applies only to adults and young people aged 14 years and over).

Adjustment: This is where rates or results have been adjusted to take account of differences in the distribution of other factors (such as age) between different groups (eg, ethnic groups).

Anthropometry: The measurement of body size (eg, height and weight).

Bioavailability: The degree to which a nutrient (eg, iron) or drug becomes available for use in the body after ingestion or administration.

Blood pressure: The pressure exerted by circulating blood on the walls of blood vessels. Blood pressure is measured as maximum (systolic) and minimum (diastolic) blood pressure.

Body mass index (BMI): A measure of weight adjusted for height used to classify people as underweight, normal, overweight or obese. BMI is calculated by dividing weight in kilograms by height in metres squared (kg/m²).

Crude data: An estimate that has not been adjusted for other factors (such as age or ethnicity).

Dietary supplements: Products containing vitamins, minerals, herbs or botanicals, amino acids and various other dietary substances that are intended to supplement the diet rather than be an entire meal or diet. They are intended for ingestion as a pill, capsule, tablet or liquid and do not usually resemble conventional foods.

Estimated average requirement (EAR): A daily nutrient level estimated to meet the requirements of half of the healthy individuals in a particular life stage and gender group.

Fatty acid: A component of fat consisting of a hydrocarbon chain with a methyl group at one end and a carboxyl group at the other. The three main types of fatty acids in the diet are: saturated, monounsaturated and polyunsaturated.

Folate: A generic term for the various forms of folate found in food. Folate is involved in the metabolism of nucleic and amino acids, and hence the synthesis of deoxyribonucleic acid (DNA), ribonucleic acid and proteins.
Folic acid A synthetic form of folate, which is found in supplements and fortified foods and beverages. It is more bioavailable and stable than folate in food.

Food security Access to adequate, safe, affordable and acceptable food. In contrast, food insecurity occurs when the availability of nutritionally adequate and safe foods, or the ability to acquire such foods, is limited or uncertain.

FOODfiles An electronic subset of the New Zealand Food Composition Database.

Fortification The addition of permitted nutrients to food. Nutrients can be added to correct a demonstrated deficiency in the population, to replace nutrients lost during processing, storage or handling, or for other reasons.

Glycated haemoglobin (HbA1c) A measure of average blood glucose over the past four to six weeks. HBA1c is measured as a percentage.

Haemoglobin The protein that carries oxygen in the red blood cells.

LINZ® Life in New Zealand Nutrition and Activity Research Unit, University of Otago.

LINZ24© The data capture software package of the LINZ® Nutrition and Activity Research Unit, University of Otago.

Lipoproteins Clusters of lipids associated with proteins that serve as transport vehicles for lipids in the lymph and blood. Dietary fats circulate in the blood bound to lipoproteins.

Macronutrients Nutrients needed in larger quantities, such as protein, carbohydrate and fat.

Meshblock The smallest geographic unit for which statistical data are collected by Statistics New Zealand. Meshblocks vary in size from part of a city block to large areas of rural land. Each meshblock abuts another to cover all of New Zealand.

Micronutrients Nutrients needed in small amounts, such as vitamins and minerals.

Monounsaturated fatty acid (MUFA) A type of unsaturated fatty acid in which there is one double bond.

Neighbourhood deprivation A measure of the socioeconomic status of an area (see New Zealand Deprivation Index 2006).

Neural tube defects (NTDs) A group of birth defects in which the brain, spinal cord or covering of these organs has not developed properly.
New Zealand Deprivation Index 2006 (NZDep2006)

An area-based index of deprivation, which measures the level of socioeconomic deprivation for each neighbourhood (meshblock) according to a combination of the following 2006 census variables: income, benefit receipt, transport (access to car), household crowding, home ownership, employment status, qualifications, support (sole-parent families), and access to a telephone. In this report, results are presented as quintiles (each quintile contains approximately 20% of the population).

New Zealand Food Composition Database

A database containing data on the nutrient composition of foods and drinks commonly consumed in New Zealand.

Nutrient reference values (NRVs)

A set of recommendations for intakes of energy and nutrients aimed at avoiding deficiency and excess/toxicity. They also include guidance on the dietary patterns needed to reduce the risk of chronic disease.

Obesity

Excess weight for height to the extent that health may be affected.

PC-SIDE

Computer software used to estimate distribution of usual nutrient intake for a group.

Polyunsaturated fatty acid (PUFA)

An unsaturated fatty acid with two or more double bonds. Dietary sources include most plant oils, particularly sunflower, soybean, safflower and corn, as well as most margarines and spreads.

Prevalence

The proportion of people with a health-related state (typically a disease or risk factor) at a specific period of time within a specific population. It is defined as the total number of cases in the population, divided by the number of individuals in the population.

Retinol equivalent

The recommendation for vitamin A intake is expressed as micrograms of retinol equivalents. Retinol equivalents account for the conversion of some β-carotene to retinol. One microgram (1 µg) of retinol equivalent equals 1 µg of retinol, or 6 µg of β-carotene.

Saturated fatty acid (SAFA)

A fatty acid in which there are no double bonds between the carbon atoms of the fatty acid chain. Diets high in saturated fatty acids increase the risk of atherosclerosis and coronary heart disease.

Total response ethnic group

A categorisation of ethnicity whereby each person is assigned to all those ethnicities they identify with. Total response ethnicity has been used in this publication.

Trans fatty acids

Unsaturated fatty acids with one or more double bonds in the trans configuration. These occur naturally in some ruminant foods, but are also produced by partial hydrogenation of polyunsaturated fats in food processing.

Usual intake

The distribution of observed intakes from a single 24-hour recall, adjusted to remove the effects of within-person (or intra-individual) variability. This can be achieved by collecting two 24-hour recalls from a representative sub-sample of the group.
Abbreviations

AMDR acceptable macronutrient distribution range
BMI body mass index
CAPI computer-assisted personal interview
CI confidence interval
CURF confidentialised unit record file
DFE dietary folate equivalent
EAR estimated average requirement
HDL high-density lipoprotein cholesterol
ICCID International Council for Control of Iodine Deficiency Disorders
LDL low-density lipoprotein cholesterol
LINZ® Life in New Zealand Nutrition and Activity Research Unit, University of Otago
LINZ24© data capture software package of the LINZ® Nutrition and Activity Research Unit, University of Otago
MUFA monounsaturated fatty acid
NHDHES United States National Health and Nutrition Examination Survey
NNS National Nutrition Survey (1997)
NRV nutrient reference value
NTDs neural tube defects
NZANS New Zealand Adult Nutrition Survey (2008/09)
NZDep2006 New Zealand Deprivation Index 2006
NZEO New Zealand European and Others ethnic group
NZFCDB New Zealand Food Composition Database
PUFA polyunsaturated fatty acid
RE retinol equivalent
SAFA saturated fatty acid
USDA United States Department of Agriculture
Executive Summary

Introduction

The 2008/09 New Zealand Adult Nutrition Survey (NZANS) was carried out from October 2008 to October 2009, collecting information from 4721 adult New Zealanders aged 15 years and over.

The 2008/09 NZANS assessed self-reported food and nutrient intake, dietary habits and eating patterns, dietary supplement use, household food security, and nutrition-related health conditions and risk factors. The survey also included measurements (height, weight, waist circumference and blood pressure) and the collection of blood and urine samples.

A final response rate of 61% was achieved (44% for blood and urine samples). These response rates are considered good for a national nutrition survey. All results have been weighted in order to be representative of New Zealand’s estimated resident population aged 15 years and over living in permanent private dwellings at 31 June 2007.

Nutrition is an important determinant of health. This survey provides valuable information for the development, implementation and monitoring of nutrition policies and programmes to improve the health of New Zealanders. Knowledge of New Zealanders’ dietary habits, body size and nutrition-related health will assist health professionals to provide nutrition advice that is relevant and will help with planning services for diabetes and cardiovascular disease. Survey data can also be used to inform the development of food standards and monitor changes in the food supply.

The analyses presented in this report are only a small proportion of those that could be undertaken, and in many ways pose more questions than they answer. The Ministry of Health encourages researchers to use 2008/09 NZANS data sets to explore topics of interest. Additional descriptive results are available in the online data tables. Reports presenting results for Māori compared to non-Māori and Pacific compared to non-Pacific will be released in late 2011.

Energy and macronutrient intake

Energy

Energy is required in the body for metabolic processes, physiological functions, muscular activity, heat production, growth and the synthesis of new tissues. The macronutrients protein, carbohydrate, fat and alcohol from food and drinks are the only sources of energy for humans.

The median daily energy intake from foods and beverages was 10,380 kJ for males and 7448 kJ for females. The Bread group was the main contributor to energy intake (11%), followed by Grains and pasta (7%) and Potatoes, kumara and taro (6%).
The reported energy intake of New Zealanders aged 15 years and over has dropped since 1997, although the decrease for females was not significant. The increase in body weight, body mass index and the prevalence of obesity in the intervening period suggests that the energy ‘equation’ continues to be unbalanced, with energy ‘in’ exceeding energy ‘out’. The survey did not assess energy expenditure, so further research is needed to explore the underlying reasons for the reported decrease in energy intake from 1997 to 2008/09.

Protein

Protein is necessary to build, maintain and repair tissue and to synthesise hormones, enzymes and antibodies. Proteins are made up of 20 amino acids, some of which the body can synthesise, but others must be obtained from food.

The median usual daily intake was 102 g of protein for males and 71 g for females, with most people (98%) meeting the recommended average protein requirement. Protein provided 16.4% and 16.5% of energy for males and females, respectively; this falls within the recommended range of 15–25% energy from protein. The single biggest contributor of protein in the diet was the Bread group (11%), followed by the groups Poultry and Milk (each 9%). The contribution of protein to energy has increased from 1997 to 2008/09 for both males and females.

Fat

Fats are the most concentrated sources of energy. Dietary fats also help in the absorption of fat-soluble vitamins, are the precursors of many hormones, and are an important structural component of cell membranes. There are three main types of fatty acids in the diet: saturated, monounsaturated and polyunsaturated.

The median usual daily intake of total fat was 95 g for males and 67 g for females. Total fat provided 33.7% and 33.8% of energy for males and females, respectively; this falls within the recommended range of 20–35% energy from total fat. The biggest single contributor to total fat in the diet was the group Butter and margarine (9%), followed by Potatoes, kumara and taro, Bread-based dishes and Poultry (each 6%). The contribution of total fat to energy has decreased from 1997 to 2008/09 for males and females, although the decrease was not significant for females.

The median usual daily intake of saturated fat was 36.5 g for males and 25.8 g for females. Saturated fat was provided by the following groups: Butter and margarine and Milk (each 8%), Bread-based dishes, Cheese and Potatoes, kumara and taro (each 6%). From 1997 to 2008/09 there was a decline in the contribution of saturated fat to daily energy intake for both males (15.1% to 13.1%) and females (14.7% to 13.1%). However, this contribution is still above the recommended 10% contribution of saturated fat to total energy.
The median usual daily intake of monounsaturated fat was 35.1 g for males and 24.3 g for females. The Butter and margarine group provided 10% of monounsaturated fat, Poultry and Potatoes, kumara and taro each provided 7%, and Bread-based dishes and Beef and veal each provided 6%. From 1997 to 2008/09 the proportion of energy from monounsaturated fat increased for both males (11.8% to 12.4%) and females (11.4% to 12.3%).

The median usual daily intake of polyunsaturated fat was 13.1 g for males and 9.6 g for females. Polyunsaturated fat provided 4.8% and 4.9% of energy for males and females, respectively. The Butter and margarine group provided 12% of polyunsaturated fat, Bread 9%, Bread-based dishes and Potatoes, kumara and taro each 7%, and Vegetables and Poultry each 6%. There was no change in polyunsaturated fat intake from 1997 to 2008/09.

Carbohydrate

Carbohydrates are a diverse group of substances with varied chemical and physiological properties with varying importance to health. They include the sugars, starches and fibres.

The median usual daily intake was 278 g of carbohydrate for males and 207 g for females. The mean contribution of carbohydrate to daily energy intake was 46.0% for males and 47.1% for females; this falls within the recommended range of 45–65% energy from carbohydrate. Bread was the biggest single contributor to carbohydrate intake (17%). There was no change in the contribution of carbohydrate to daily energy from 1997 to 2008/09.

The median usual daily intake of total sugars was 120 g for males and 96 g for females. Sucrose was the major contributor to total sugars, followed by fructose, glucose, lactose and maltose. Almost one-quarter of the sucrose came from the group Sugars and sweets (23%), followed by Non-alcoholic beverages and Fruit (each 16%).

Dietary fibre intake was 22.1 g and 17.5 g per day for males and females, respectively. Bread (17%) and Vegetables (16%) were the main contributors to dietary fibre intake, followed by Potatoes, kumara and taro, and Fruit (each 12%).

Micronutrient intake

Micronutrients are nutrients needed in small amounts, such as vitamins and minerals. The survey measured intakes of vitamins A, B, C and E and the minerals calcium, iron, zinc, potassium and selenium. Where appropriate, micronutrient intakes were compared to nutrient reference values to estimate the prevalence of inadequate intake. Estimates of vitamin and mineral intake are from food and beverages only, and do not include micronutrients from supplements (other than supplements providing energy, eg meal replacements).
Vitamins

Forty-two percent of vitamin A in the diet came from retinol (animal-based foods) and the remainder from carotenoids (plant-based foods). The estimated prevalence of inadequate vitamin A intake was higher for males (22.7%) than for females (12.1%). There was a decrease in vitamin A intake from 1997 to 2008/09 for both males and females.

The B vitamins – thiamin, riboflavin, niacin, vitamin B6 and vitamin B12 – appear to be adequate for many males and females, but intakes in some age groups were less than optimal.

Vitamin C intakes were adequate for almost all New Zealanders aged 15 years and over. The predominant sources of vitamin C were Vegetables (28%), Fruit (22%), Non-alcoholic beverages (15%) and Potatoes, kumara and taro (13%).

Minerals

Most New Zealanders aged 15 years and over do not meet the recommendations for calcium intake. However, the adequacy of calcium intake is difficult to interpret given the high recommended levels to which they are compared and because calcium intake is only one of many factors that affect bone health. Experts worldwide are not agreed on optimal intakes because although calcium is of major importance to attaining and maintaining bone health, many other factors such as vitamin D status, physical activity levels and habitual levels of intake also influence bone health.

One in four (24.7%) New Zealanders aged 15 years and over had an inadequate intake of zinc (males 39.1%; females 11.2%). Beef and veal (10%), Bread (10%) and Grains and pasta (9%) were the largest contributors of zinc to the diet. There was a decrease in zinc intake from 1997 to 2008/09 for both males and females.

Selenium intakes increased from 1997 to 2008/09, but intakes were still inadequate for about one-third of males (31.5%) and over half (58.2%) of females. The Bread group was the largest single contributor of selenium to the diet (15%), followed by Fish and seafood (12%), and Poultry (10%).

Dietary supplements

Although the energy nutrient intakes of the population have been calculated without adding nutrients from supplements (other than supplements providing energy), information about the use of dietary supplements was collected.

Oils (fish oils and plant oils) was the supplement group used most often by New Zealanders aged 15 years and over. The Regular use of supplements was more frequent among older New Zealanders and Occasional use more frequent among younger age groups.
Dietary habits

Dietary habits and patterns are associated with diet quality and nutrition-related health status. Participants were asked about key behaviours such as breakfast consumption, the frequency of eating certain foods and food groups, food preparation and cooking practices (eg, removal of excess fat, addition of salt), and choosing low fat or reduced-salt foods.

Breakfast was eaten daily by two-thirds of New Zealanders aged 15 years and over (males 64.5%; females 69.1%). Those aged 51+ years were more likely to have eaten breakfast daily than younger age groups.

Three-fifths (59.3%) of males and 72.2% of females reported eating the recommended three or more servings of vegetables each day, and 54.6% of males and 65.8% of females reported eating the recommended two or more servings of fruit each day. From 1997 to 2008/09 there was an increase in the proportion of males and females who reported eating the recommended number of servings of fruit, with no change in the proportion who reported eating the recommended number of servings of vegetables.

Whole-grain bread (heavy or light grain) was chosen most often by 60.4% of males and 65.9% of females. The proportion of males and females choosing whole-grain bread increased with increasing age.

Reduced-fat or trim milk was chosen most of the time by 44.5% of males and 51.9% of females. The use of reduced-fat or trim milk increased with increasing age for both males and females.

The excess fat was regularly or always removed from meat by 56.5% of males and 67.4% of females. Chicken skin was regularly or always removed by 42.3% of males and 53.5% of females.

Two-thirds of males (68.4%) and females (68.8%) reported choosing margarine as a spread most of the time, and one-fifth (20.1%) chose butter. Oil was used most often when cooking by 89.7% of males and 90.1% of females.

Almost all (98%) males and females used salt in the home. Of those who used salt in the home, 85.7% used iodised salt.

Food security

‘Food security’ is an internationally recognised term that encompasses the ready availability of nutritionally adequate and safe foods, and the assured ability to acquire personally acceptable foods in a socially acceptable way.

Based on responses to a series of eight statements, 59.1% of households were classified as being Fully/almost food secure, 33.7% were classified as being Moderately food secure, and 7.3% were classified as having Low food security. From 1997 to 2008/09 the proportion of households classified as having Low food security increased for males (1.6% to 5.6%) and females (3.8% to 8.8%).
Nutrition-related health outcomes

A range of anthropometric, biochemical and clinical measures were used to assess nutrition-related health status.

Body size and obesity

A healthy body size is important for good health and wellbeing. Obesity is associated with a long list of health conditions, including: cardiovascular disease (ischaemic heart disease, high blood pressure and stroke), various types of cancer, type 2 diabetes, osteoarthritis, sleep apnoea, and psychological and social problems.

Mean BMI was 27.6 kg/m2 for both males and females. From 1997 to 2008/09 there was an increase in mean BMI in both males and females.

The prevalence of obesity was 27.7% in males and 27.8% in females, an increase since 1997 (males 17.0%, females 20.6%). Data from the 2002/03 and 2006/07 New Zealand Health Surveys have previously shown that the prevalence of obesity had increased since 1997.

Blood pressure

Mean systolic blood pressure was 130 mmHg in males and 122 mmHg in females. Systolic blood pressure was highest in those aged 71+ years.

Iron status

The prevalence of iron deficiency among females aged 15 years and over increased from 2.9% in 1997 to 7.2% in 2008/09.

Folate status

It was not possible to reliably determine dietary folate intake, but biochemical measures indicate folate status is satisfactory for most New Zealanders aged 15 years and over. Four percent of women of childbearing age had red blood cell folate levels associated with a high risk of having a baby affected by neural tube defects (NTDs), such as spina bifida. Twenty-seven percent had levels associated with a low risk of NTDs (≥ 906 nmol/L).

Iodine status

The New Zealand population aged 15 years and over is classified as mildly iodine deficient because the median urinary iodine concentration of 53 µg/L falls within the range defined by the International Council for the Control of Iodine Deficiency Disorders as mild iodine deficiency (50–99 µg/L). This survey took place before the implementation of mandatory fortification of bread with iodised salt (to reduce the prevalence of iodine deficiency) in September 2009.
Blood cholesterol
From 1997 to 2008/09 total cholesterol levels decreased in males (5.70 to 5.09 mmol/L) and females (5.73 to 5.17 mmol/L), while HDL cholesterol levels have increased slightly. Although it is likely that dietary factors, such as the decrease in saturated fat intake, contributed to the decline in total cholesterol, the increased prescribing of lipid-lowering drugs is also likely to have played a role.

Diabetes
Glycated haemoglobin (HbA1c) was measured in blood samples to allow the prevalence of undiagnosed diabetes to be estimated. Overall, 6.9% of New Zealanders aged 15 years and over have diabetes. Of these, just over one-quarter (2.0% of the total population) had not reported being told by a doctor that they had diabetes but had HbA1c levels $\geq 6.5\%$, which is indicative of undiagnosed diabetes.

HbA1c levels also give an indication of blood glucose management among those who have been diagnosed with diabetes. Just under one-half (48.5%) of those with known diabetes had good diabetes control (HbA1c levels < 7.0%).