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A mathematical model for measles vaccination ∗

M G Roberts
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Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand

August 27, 2004

Abstract

A previously-published model of the dynamics of measles infections

in New Zealand is used to evaluate the present vaccination strategy of

MMR1 at 15 months and MMR2 before 5 years. The results show that

achieving coverage of 90% or better at both vaccination opportunities is

necessary if future epidemics of measles are to be prevented.

∗Report prepared for The Ministry of Health, Wellington.
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A mathematical model for measles vaccination 2

1 Introduction

The original mathematical model for the dynamics of measles in New Zealand

was prepared in 1996 (Tobias & Roberts 1998). It successfully predicted the

1997 epidemic, which was curtailed by a mass vaccination campaign (Mansoor

et al 1998; Roberts & Tobias 2000). A subsequent extension of this work in

1998 showed that the then current schedule of MMR1 at 15 months and MMR2

at 11 years was insufficient to prevent further epidemics. The schedule was

changed in 2000 with MMR2 now being administered before 5 years (Anon.

2002a).

A variety of similar models for measles vaccination strategies have been devel-

oped by other authors for various regions (Agur et al 1993; Babad et al 1995;

Edmunds et al 2000; Gay et al 1998; Wallinga et al 2001). These have invari-

ably been based on sets of nonlinear differential equations, and the conclusions

reached have been similar. The differences in the models have been in the de-

tails of the representation of the infectious period, and in the ways in which

the age and contact structures of the population have been specified. As the

time-course of a measles epidemic is short compared to that of demographic

changes, details of the epidemic process are not relevant when examining pop-

ulation level changes over many years. In fact, it has been shown (Diekmann

& Heesterbeek 2000) that the number infected in an epidemic depends only

on the basic reproduction number (see below), and the numbers that are ini-

tially susceptible in each sub-population. It is therefore important to have a

realistic representation of the population contact structure. The Royal Society

(UK) report on the 2001 epidemic of Foot and Mouth Disease advocated that

contact structures for infectious diseases should be described before epidemics

occur, so that models may be speedily prepared. The report presented the
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New Zealand measles model as an example of the successful use of modelling

in epidemiology (Anon. 2002b).

The quantity that determines whether an epidemic will occur is the basic

reproduction number of the infection, R0. This is defined as the expected

number of secondary infections that would arise from a single primary infec-

tion introduced into a fully susceptible population (Anderson & May 1991;

Diekmann & Heesterbeek 2000). Clearly if R0 > 1 an epidemic will occur fol-

lowing an introduction of infection. The best estimate we had for measles in

New Zealand was R0 = 12.8, the change in the birth rate (56780 p.a. in 2004,

www.stats.govt.nz) could have reduced this slightly to R0 = 12.5 (see results

section). Recall that R0 is calculated in the absence of control measures. We

are interested in two related quantities:

• The basic reproduction number of the infection under vaccination, Rv,

is the expected number of secondary infections that would arise from a

single primary infection introduced into a vaccinated population at equi-

librium. This is a robust indicator of the performance of a vaccination

schedule. If Rv < 1 epidemics are prevented.

• The case reproduction number of the infection at time t, Rt, is the

expected number of secondary infections that arise from a single infection

at a particular time. This depends on the number in the population who

are susceptible, either through prior infection or vaccination.

The dynamics of the process may be summarised as follows. Assume that

the population has Rt < 1 for measles. As the number of susceptibles in the

population increases, through children that miss their scheduled immunisa-

tions, then Rt increases. An epidemic occurs when Rt has increased above

one. During the epidemic the number of susceptibles and hence Rt decreases.
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In order to assess the efficacy of the vaccination campaign in the absence of

precise information on levels of vaccination coverage, we assumed a range of

plausible coverages at MMR1 and MMR2 and determined the corresponding

value of Rv for each. For selected combinations we also numerically solved

the model over a period of 150 years, not as a prediction of what will happen

over that time period but in order to determine what the expected frequency

of epidemics would be if this level of vaccination were to be in maintained In

all cases, if Rv < 1 epidemics are prevented.

2 Method

For this exercise we modelled the New Zealand population in the same way

as in Roberts & Tobias (2000). We approximated the population structure by

assuming that the birth rate was constant, and that deaths before the age of

25 could be neglected. Hence the four age groups active in the epidemic have

constant size. The age groups were taken as 6 - 15 months, 15 months - 5 years,

5 years - 11 years and 11 years - 25 years. Hence MMR1 is applied as children

pass from the first to the second group, and MMR2 from the second to the

third. The same contact matrix was used as in Roberts & Tobias (2000). For

a range of vaccination coverages for MMR1 and MMR2 (see Table 1) the basic

reproduction number of the infection under vaccination, Rv, was calculated.

In addition, for each combination of coverages the differential equation model

was solved numerically until the epidemics settled into a regular pattern, and

the inter-epidemic period was determined.
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3 Results

Calculated values of Rv for the various coverage levels of MMR1 and MMR2

that were considered are presented in Table 1.

MMR1 coverage

MMR2 coverage 80% 85% 90% 95%

60% 1.722 1.455 1.187 0.92

70% 1.433 1.216 0.99 0.77

80% 1.144 0.97 0.79 0.62

85% 1.008 0.85 0.70 0 55

90% 0.87 0.74 0 61 0.48

95% 0.75 0.64 0.53 0.42

Table 1: The basic reproduction number of the infection under vaccination,

Rv, for various coverage levels of MMR1 and MMR2. Superscripts refer to

the figure number where numerical solutions are presented. If Rv < 1 then

epidemics will not occur.

When no vaccination is applied, the system settles down to an epidemic every

two years. This corresponds to an estimated R0 = 12.5, similar to that which

was observed in New Zealand in the 1960s (see Fig.1). The minimum level of

vaccination investigated (MMR1 = 80%, MMR2 = 60%) resulted in Rv = 1.72

and a pattern of epidemics settling down to one every 12 years (see Fig.2).

The other combinations of MMR1 and MMR2 coverage levels that resulted

in Rv > 1 all resulted in epidemics recurring at intervals of between 10 and

20 years (Figs. 3-7). All other combinations of MMR1 and MMR2 resulted

in Rv ≤ 1 and the system settling down to a steady uninfected state with no

epidemics, see Table 1 and Fig.8 for an example.
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4 Discussion

The model developed by Roberts & Tobias (2000) supported the change in the

immunisation schedule that took effect in January 2001, at which time MMR2

was changed from delivery at 11 years to delivery before the age of five. These

results were in line with those obtained by other authors, for example: Babad

et al (1995) advocated a two-dose schedule for England and Wales, with the

second vaccination given at age four; and Gay et al (1998) recommended a

second vaccination at either 18 months or five years, to complement the first

vaccination at 12 months in Canada. In addition, Agur et al (1993) found that

vaccinating 85% of susceptible children aged one to seven years at five-yearly

intervals would prevent epidemics in Israel. These authors all agree that two

vaccinations at no less than five years apart are necessary to prevent measles

epidemics.

A different approach was taken by Wallinga et al (2001). These authors took

existing policies in eight European countries and estimated the coverage rates

required to reduce Rv below one. They found that results depended on the

age at delivery, but no strategy succeeded if coverage rates were below approx-

imately 87%. Our results presented in Table 1 are similar where coverage is

assumed to be the same at MMR1 and MMR2. The results also show the ab-

solute necessity of maintaining high coverage rates in order to prevent future

epidemics. It is difficult to estimate the proportion of the school-age popu-

lation that have been effectively immunised, but this is continuously being

diluted by children who are not immunised. Wallinga et al (2000) noted that

in Italy only MMR1 was offered at 18 months with no second vaccination op-

portunity, and that under most plausible assumptions for contact rates even

100% coverage would be insufficient to prevent epidemics.
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Our final conclusion must depend on how much faith is placed in the model.

The results are consistent with those of other authors, and from Table 1 it

could be deduced that 85% coverage at MMR1 and MMR2 could be sufficient

to prevent future measles epidemics. However, a study by Glass et al (2004)

in the Netherlands showed that high overall levels of measles vaccination can

obscure pockets of poor coverage, resulting in localised regions with increased

risk of infection. Our results indicate that overall targets or 90% or more will

need to be achieved to prevent future epidemics in New Zealand.

Acknowledgments: The author wishes to thank Mini Ghosh and Joanne

Mann for assistance with the numerical computations.
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Appendix

The next generation matrix was calculated in a slightly different way to that

in Roberts & Tobias (2000). In the absence of demographic influences the

matrix is defined by

Ki,j =
βCi,jSi

µj + γ

where Si is the steady state number susceptible in age group i. Correcting the

next generation matrix for demographic influences yields

K̃i,j = Ki,j +
pjµj

µj + γ
Ki,j+1

for j = 1, 2, 3 and K̃i,4 = Ki,4. In the absence of vaccination the pj = 1. In the

presence of vaccination p1 and p2 are calculated from the MMR1 and MMR2

coverages and the vaccine efficacies (as percentages):

p1 = 1− EFF1
100

MMR1
100

p2 = 1− EFF2
100

MMR2
100

All othe symbols are as in Roberts & Tobias (2000). The change made a

small difference to the values of R0 and Rv returned, but this was less than

the round-off error in Table 1 and hence did not affect the results.
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